Here's a question I've wondered for a long time and never really found a good answer to. How does the gear ratio of a differential affect the strength of that gear set? For example, what is the loss of gear strength when we do something like change from 3.73 to 4.88?
I've heard things for sure get weaker as you increase the numeric gear ratio, but this doesn't make any sense to me. The same force is required on a tooth of the ring gear to apply the same torque to the wheels. The diameter of the pinion gear is going to proportionally decrease with the gear ratio increase, but the torque on it to result in a given wheel torque also proportionally decreases so in the end the forces on the teeth are exactly the same to result in the same wheel torque...
So I'm curious what the mechanical explanation for the loss of strength is, and also curious what the actual real-world loss of strength is? It can't possibly be linearly proportional to gear ratio change, so what's the equation?
I've heard things for sure get weaker as you increase the numeric gear ratio, but this doesn't make any sense to me. The same force is required on a tooth of the ring gear to apply the same torque to the wheels. The diameter of the pinion gear is going to proportionally decrease with the gear ratio increase, but the torque on it to result in a given wheel torque also proportionally decreases so in the end the forces on the teeth are exactly the same to result in the same wheel torque...
So I'm curious what the mechanical explanation for the loss of strength is, and also curious what the actual real-world loss of strength is? It can't possibly be linearly proportional to gear ratio change, so what's the equation?