JKOwners Forum banner

Diagnosing Death Wobble and Fixing Non-DW Shimmies and Wobbles

135597 Views 217 Replies 72 Participants Last post by  TheSecretSavage
The Inspection Checklist is in Post #5 of this thread.

Most people would benefit from watching these two videos. The videos are kind of long at 18-19 minutes each. Hopefully, they are thorough enough to help.

PLANMAN explains Death Wobble Diagnosis and Inspection Jeep JK Wrangler Part 1 - YouTube
Part 2, PLANMAN explains Death Wobble Diagnosis and Inspection Jeep JK Wrangler - YouTube

I'll start out by explaining that Chrysler decided to use a 14 mm trackbar bolt, with a trackbar bushing sleeve designed for a 9/16" bolt, and the trackbar bracket bolt holes are somewhere around 15-16 mm large. This is a sure recipe for DW if the trackbar bolts are not properly torqued and periodically re-torqued to 125 ft. lbs.

Stock JK bolt in stock trackbar bracket hole - YouTube

HITMONEY suggested I do a Death Wobble Write Up Dept. thread.

It is a good suggestion because my DW posts are buried in other members' threads and in some PMs.

So, here are some of my posts and PMs regarding DW.

I will also include info on non-DW shimmies and wobbles in the thread.

I will clean it up as I go, but it should be helpful nonetheless.


Death Wobble is no mystery.

It is caused by loose bolts, damaged components, or improper installation.

Look at the picture below and follow along:



First, the tie rod (green) has ends that attach to a knuckle on each side. As you could imagine, if either ends of the tie rod were broken or bad, that could be a culprit for a shimmy (not Death Wobble). A common place to damage the tie rod is on the driver's side at the adjusting sleeve (in the picture, just to the right of the red swaybar link). That sleeve (maybe not the correct term for it, but you can see what I am talking about) allows the width of the tie rod to be expanded or contracted. There are threads on that end that can be damaged, causing play on that driver's side and allow an up and down, or circular play movement. Again, this would cause a shimmy, not Death Wobble.

Next, look at the drag link (purple). On one end, it attaches to the pitman arm (lavender), that attaches to the steering gear box. On the other end, the drag link attaches to the passenger side knuckle. When you turn your steering wheel, a shaft turns that goes to the steering gear box. The steering gear box turns the pitman arm, and the pitman arm pushes or pulls the drag link, which pushes or pulls the knuckle. Your steering wheel is straitened by loosening the two nuts on the sleeve/turnbuckle on the drag link and rotating the sleeve/turnbuckle to lengthen or contract the length of the drag link. If either end of the drag link is damaged, this would cause a wobble or shimmy, but not Death Wobble.

Next, look at the trackbar (aqua). It attaches to a bracket on the frame on the driver's side and to the axle on the passenger side. The purpose of the trackbar is to center the axle on the frame. With the axle centered on the frame, it provides some resistance to the steering system to allow you to turn. If there was no trackbar and you turned the steering, the whole front frame would shift. As a result, there is significant force applied to the trackbar in driving and steering.

Now, imagine that the bolts that hold the trackbar are loose in their bolt holes, or that the bolt holes are wallowed out (oval), or that the bushings at the trackbar ends are damaged, or that the bracket at the axle side has come loose because the weld has broken, or that the bushings are all twisted up because the rig has been lifted without the installer loosening the bolts and then retightened them at the new ride height. All these things would allow play in the front trackbar. When you steer or go around a corner, these loose or broken things would allow the axle to shake or slide side to side. If you hit a bump in the road, it could knock the trackbar towards the driver's side. Then, the rest of the suspension (springs, etc.) would try to bring the trackbar back to the passenger side. If you were going at any sort of speed, you could develop a kind of harmonic resonance as the axle more and more violently slide/rocked/shaked from side to side. It would feel like your whole front end was being voilently torn apart. You would have to bring your vehicle to a complete standstill to stop the harmonic resonance. This is Death Wobble.

Even one incident of violent Death Wobble related to the front trackbar can cause significant damage. The voilent harmonic resonance of the back and forth shaking is more than the trackbar bushings, bolt holes, and brackets are designed to handle. A severe Death Wobble occurance can crack or break the welds on the axle side trackbar bracket, or the bolt can wallow out the bolt hole in the bracket, or the bushing can be permanently damaged.

This is the most common source of Death Wobble because inexperienced installers either do not remove the bolt from the trackbar when they install a lift--leaving the bushing pinched in the bracket and bound up, or they do not properly torque the bolts after the lift has been installed with the tires on and the full weight of the vehicle on the ground at ride height, or (maybe the most common) they do not retorque the trackbar bolts after the first 50 miles, after every heavy wheeling trip, and at every oil change interval.

Next, look at the lower control arms (purple) and the upper control arms (light blue). In the picture, they are aftermarket arms with a heim joint on one end. However, the stock control arms have a rubber bushing at each end. When the control arms are properly torqued, the bushing is somewhat pinched in the mounting brackets on the axle and the frame. Sometimes, an installer will make the mistake of not loosening the bolts for the control arms when they install a lift. What happens sometimes is they really bind up the bushings because they are pinched/sandwiched at stock ride height, but then forced to the new lifted ride height. These bound up bushings can cause weird handling, bushing failure, and lead to Death Wobble. The proper way is to loosen the bolts, install the lift, reinstall the wheels so the suspension and jeep are at the new ride height, rock the vehicle/suspension back and forth and side to side, then re-torque the bolts to spec, then after 50 miles re-torque them to spec, then after every oil change or very heavy wheeling trip re-torque them to spec.


Improperly balanced tires, too much air in tires, bent wheels, improperly installed wheel spacers, bad tires (with separated plys), and poor alignment specs (caster, camber, and not enough toe-in) can cause wobbles and shimmies that lead to Death Wobble. However, these precipitate Death Wobble, but they are not the cause of Death Wobble.

Although not specifically identified in the picture, the ball joints that are at the top and bottom of each knuckle where it attaches to the axle C can go bad. Bad ball joints can cause shimmies, wobbles, but usually not full on Death Wobble.

Next, allthough not identified in the picture, the unit bearings can go bad and be a cause of shimmy and wobble, but not Death Wobble.

Hope this helps--assuming you read it all.

Death Wobble is no mystery.

The reason that the steering stabilizer masks it is that it can absorb some of the side to side voilent harmonics of a loose trackbar or damaged mounts. However, this masking is dangerous because it will not prevent the eventual failure of trackbar bracket welds and bolt holes from trackbar Death Wobble.



It is extremely important to immediately diagnose and fix Death Wobble.

Even one episode of DW can damage other components.

Multiple episodes of DW are almost guaranteed to damage other components.

Multiple episodes will often damage your:

  • ball joints
  • tie rod ends--including the adjusting sleeve end on the driver side
  • trackbar bushings
  • trackbar bracket bolt holes
  • steering sector shaft (where the pitman arm attaches to the steering box)
  • steering stabilizer
  • front lower control arm bracket bolt holes
  • unit bearings
  • trackbar bracket welds
  • drag link ends

Hellbound13 is an example of a member who with 5-6 episodes of trackbar related DW on a stock jeep ended up "chasing his tail" for many, many months. He ended up replacing almost everything in the above list--sometimes more than once.

Without repairing/replacing everything that was damaged at once, the remaining damaged components continued to cause DW problems, further damaging the remaining components.




This is Death Wobble (and the guy is extremely foolish for repeating it on purpose):

Death Wobble - YouTube
See less See more
  • Like
Reactions: 1
1 - 20 of 218 Posts
:beer:Thanks for the right up.
Everyone should just rawk dual stabos....... :grinpimp:


(and not the cool home made ones like Hundy)
I torque everything to 140lbs and not a shimmy yet thank god, holes all checked last week and NO wear or ovaling whatsoever.
Further Steps to Diagnose and Fix

NEW, UPDATED DIAGNOSIS CHECKLIST

Assuming your tire psi is 28-30, your tires/wheels have been balanced and rotated to make sure the wobble doesn't move with the rotation, here would be my order:


  1. Remove the steering stabilizer.
  2. Have someone turn the engine on and turn slowly from full lock to full lock while I visually, manually (with my hands on the components), and auditorily inspect for any play in the tie rod ends, drag link ends, sector shaft, trackbar ends/bolts/brackets, and trackbar bracket welds.
  3. Then, do the same thing but with short, sharp, quick back and forth turns of the steering wheel between the 10 o'clock and 2 o'clock positions, instead of the slow, lock to lock approach.
  4. Then, I would remove the front trackbar to inspect the bolt holes for ovaling and inspect the trackbar bushings for separation or cracking with a long screw driver through the bolt sleeve and the trackbar in a vise to leverage against the bushing in all directions. If all is good, I would reinstall the trackbar with the tires on the ground at ride height to 125 lbs.
  5. Then, I would inspect the drag link end joints by using a large channel lock wrench that gave me enough leverage to check for up and down play in the drag link ends. There should not be any meaningful up and down play. If there is, the ends should be replaced, or a new drag link with heavy duty joints should be installed. After, I would check the torque of the drag link ends. Taller lifts magnify the problems of bad drag link ends.
  6. Then, I would inspect the tie rod ends with the channel lock wrench for up and down movement. There should be no meaningful up and down play. There should only be rotational movement in the joint end.
  7. Then, I would put the front axle on jack stands with the tires about 2" off the ground and check the front ball joints by using a long pry bar as a lever under the front tires to lift them up to inspect for up and down play in the lower ball joints. There shouldn't be more than maybe 1-2 mm.
  8. Then, I would grab the top of the tire with both hands and push it towards the frame and pull it away from the frame to inspect for lateral movement of the top ball joints. There shouldn't be any.
  9. Then, I would remove the front tires/wheels and remove the front tie rod--one knuckle at a time. Then with a large wrench or vice grips, I would inspect the end for side to side play. Then I would reinstall the end and torque to spec and repeat on the other side.
  10. Then, I would remove the brake calipers and brake disks to inspect the unitbearings for play.
  11. Then, I would reinstall the discs, brake calipers, and tires/wheels and set the axle back on the ground.
  12. Then, I would support but not lift the front axle with a floor jack and loosen the front control arm bolts (upper and lower on the axle side). One at a time, I would drop the control arms to inspect the bolt holes and bushings (similar to with the trackbar), reinstall without torquing, and do the next one. Afterwards, remove the floor jack so the suspension is at ride height, vigorously rock the vehicle side to side and front and back, then torque to spec.
  13. Next, I would inspect the sector shaft that comes out of the steering box for cracking or twisting.
  14. Then, I would take a test drive without the steering stablizer to feel for any wobbles.
  15. Finally, I would reinstall the steering stablizer or spring $40 for a heavy duty steering stablizer.

If this front end inspection does not diagnose and/or solve it, then I would move to an alignment.

  1. I would use adjustable lower front control arms to set my caster spec between 4 and 5 degrees--with a cross caster that has less on the driver side than the passenger side. I would personally not do more or less, with a target around 4.5-4.7 degrees caster.
  2. If my camber is out of spec, but it is not due to failed ball joints, I would install offset ball joints to get my camber in spec.
  3. I would set my toe-in to spec on the machine--which is about a 1/16"-1/8" toe-in depending on tire size.
  4. If my front to rear alignment is off, I would install rear lower adjustable control arms to fix this.

Also, I recommend you switch out your stock 14 mm trackbar bolts for 9/16" grade 8 bolts.

See the following video for more information:

Common source of death wobble on Jeep JK Wranglers - YouTube


With all this, I highly doubt you do not find the source.

The last ditch thing if there is a non-DW, speed dependent range wobble, I would borrow a different set of wheels and tires to see if it changes, and I would try driving it with no front driveshaft to see if that changes anything.

Although it is always a good idea to inspect your axle shaft u-joints, they will not cause DW.

The most common sources of full on DW are:

  • Improperly torqued trackbar bolts
  • Damaged trackbar and control arm bushings because bolts were torqued on a car lift or while the vehicle was not at ride height with the tires on the ground. When you torque trackbar and control arm bolts, the bracket pinches the bolt sleeve in the bushing, as well as the bushing itself. If this is at a geometry other than actual ride height, the bushings are twisted/bound/pre-loaded, and they will eventually fail/separate/etc. If you have a flex joint end, this does not apply for that end.
  • Ovaled out trackbar bracket holes due to DW episodes from loose bolts.
See less See more
This is a modified version of a PM to RedX08 who was fighting some wobbles:

First, I would re-align your rig with 4 degrees or more caster (assuming you have adjustable front control arms) and the most toe-in within factory specs. If you are doing it yourself using the project-jk write-up, toe-in 1/8" more in the front of the tires than the back.

Also, if you have bent an axle C and your camber is out of stock specs, this may cause some shimmy at certain speeds. You need offset ball joints to fix this.

During the alignment, I would check the tie rod adjusting sleeve to see if it was damaged to the point that it wobbles or is loose when the tie rod got bent. I would also have someone slowly turn the steering wheel from side to side while inspecting the tie rod ends and drag link end to see if their is side-to-side play. Also, with a helper turning the steering side to side, I would inspect the steering shaft (in the engine compartment), the shaft u-joints, the steering box and output shaft, and the pitman arm.

Second, I'd make sure your tire psi was somewhere between 28 and 30, and that you haven't rotated your spare to your front axle (differences in size due to the spare having less wear can cause issues).

Third, I would rotate your tires front to back to see if it is tire/wheel related (never having the spare rotated to the front). While rotating the tires, I would want to know if you have hubcentric wheel spacers from Spidertrax and that you removed the lug retainer clips when you installed the spacers. If your spacers aren't hubcentric, I would replace them. If you did not remove the lug retainer clips, that is the source of your wobble.

Fourth, I would loosen the bolts for your front trackbar and front control arms, rock the vehicle back and forth, then side to side, then re-torque everything to specs to see if it is from bushings that are bound up.

If you have had DW instead of just shimmies/wobbles, each component needs to be removed one-by-one to inspect bolt holes and bushings.

Fifth, I would inspect your ball joints by jacking up your rig with the tires slightly off the ground with the axle on jack stands. Then, while someone uses a crow bar or some other lever underneath a tire, while he person lifts up the tire I would inspect the ball joints to see if there is too much up and down play. There should be less than 1.5mm up and down movement in the lower ball joints.

Also while on the jack stands, I would grab the top of the tire with one hand and the bottom with the other hand to see rock it in and out to see if there is lateral play in the ball joints. There should be almost no lateral movement.

Sixth, while still on the front jack stands, I would remove the tires/wheels and brakes to inspect the unit-bearings to see if they have too much play.

Seventh, I would replace the tie rod with a new one--preferably a Poly Performance or Rock Krawler chromoly tie rod.

Eighth, I would sell my JKS front trackbar and replace it with a Teraflex forged front trackbar.

Ninth, I would replace my drag link with a chromoly version.

Tenth, if I hadn't gotten rid of it by then, I would sell my front axle and buy a Dynatrac 44 front housing to move my Rubi locker, gears, and my chromoly shafts into.
This did fix my wobble, but unfortunately when I came back from superlift I am having some more trouble. I am waiting for some stuff to come in and I will get it all fixed up again.
My jks track bar has worked flawless, and x2 on torquing things to 140ftlbs, or accordingly. Never one episode of dw. My friend has a stock '07 and he has dw but thinks he's smarter than the world and won't listen and swears it's the stabilizer. I'd send him this but I've sent so many to him it's a mute point at this point. Some people just won't listen and I think this is the reason for so many of these threads.
question,when i hit a bump, it wobbles a little and goes back. is that bad or some thing i should look at? i have tightened every thing down and made sure every thing is good. not sure if its just a small side effect of the lift and 35" KM2's
Text added to first post:

I'll start out by explaining that Chrysler desided to use a 14 mm trackbar bolt, with a trackbar bushing sleeve designed for a 9/16" bolt, and the trackbar bracket bolt holes are somewhere around 15-16 mm large. This is a sure recipe for DW if the trackbar bolts are not properly torqued and periodically re-torqued to 125 ft. lbs.
Using a 9/16" bolt wouldn't be a bad idea then. I saw someone posted the 2011 track bars had a ball end to them, seen that?
Using a 9/16" bolt wouldn't be a bad idea then. I saw someone posted the 2011 track bars had a ball end to them, seen that?
I haven't. The 14 mm vs. 9/16" is only about 0.3 mm difference though. I believe the primary problem is a 14 mm bolt and 15-16 mm bracket holes.
I haven't. The 14 mm vs. 9/16" is only about 0.3 mm difference though. I believe the primary problem is a 14 mm bolt and 15-16 mm bracket holes.


2011 Track Bar


See less See more
I fought a shimmy that sometimes developed into a DW for many months. Everything was tight and aligned but still had the shimmy. Then I found a thread on a board that said to set toe OUT to 3/16th if the jeep is lifted. Toe out is the only thing that solved my shimmy.
Thank You

I just wanted to say thanks for taking the time to do this writeup. This is a really important issue and you've done a very nice job.

.
Hey Planman, this has got to be one of the BEST write-ups to date on the DW. Thanks Alot.......
Good info Planman! Thanks for posting.

I fought a shimmy that sometimes developed into a DW for many months. Everything was tight and aligned but still had the shimmy. Then I found a thread on a board that said to set toe OUT to 3/16th if the jeep is lifted. Toe out is the only thing that solved my shimmy.
I know two other people who used the toe out adjustment to stop their shimmys.

Any other thoughts on using toe out vs toe in? Would toe out somehow just be masking another issue?
Good info Planman! Thanks for posting.



I know two other people who used the toe out adjustment to stop their shimmys.

Any other thoughts on using toe out vs toe in? Would toe out somehow just be masking another issue?
Toe out often masks worn ball joints.

Sent from my DROIDX using Tapatalk
Toe out often masks worn ball joints.

Sent from my DROIDX using Tapatalk
Good info! Thanks a lot! :beer:
1 - 20 of 218 Posts
This is an older thread, you may not receive a response, and could be reviving an old thread. Please consider creating a new thread.
Top